3.227 \(\int \frac{(A+B x^2) \sqrt{b x^2+c x^4}}{x^{9/2}} \, dx\)

Optimal. Leaf size=328 \[ \frac{2 \sqrt [4]{c} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+5 b B) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}-\frac{4 \sqrt [4]{c} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+5 b B) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}+\frac{4 \sqrt{c} x^{3/2} \left (b+c x^2\right ) (A c+5 b B)}{5 b \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 \sqrt{b x^2+c x^4} (A c+5 b B)}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}} \]

[Out]

(4*Sqrt[c]*(5*b*B + A*c)*x^(3/2)*(b + c*x^2))/(5*b*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - (2*(5*b*B + A*
c)*Sqrt[b*x^2 + c*x^4])/(5*b*x^(3/2)) - (2*A*(b*x^2 + c*x^4)^(3/2))/(5*b*x^(11/2)) - (4*c^(1/4)*(5*b*B + A*c)*
x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)
], 1/2])/(5*b^(3/4)*Sqrt[b*x^2 + c*x^4]) + (2*c^(1/4)*(5*b*B + A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(
Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.374005, antiderivative size = 328, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {2038, 2020, 2032, 329, 305, 220, 1196} \[ \frac{2 \sqrt [4]{c} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+5 b B) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}-\frac{4 \sqrt [4]{c} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+5 b B) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}+\frac{4 \sqrt{c} x^{3/2} \left (b+c x^2\right ) (A c+5 b B)}{5 b \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 \sqrt{b x^2+c x^4} (A c+5 b B)}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x^2)*Sqrt[b*x^2 + c*x^4])/x^(9/2),x]

[Out]

(4*Sqrt[c]*(5*b*B + A*c)*x^(3/2)*(b + c*x^2))/(5*b*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - (2*(5*b*B + A*
c)*Sqrt[b*x^2 + c*x^4])/(5*b*x^(3/2)) - (2*A*(b*x^2 + c*x^4)^(3/2))/(5*b*x^(11/2)) - (4*c^(1/4)*(5*b*B + A*c)*
x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)
], 1/2])/(5*b^(3/4)*Sqrt[b*x^2 + c*x^4]) + (2*c^(1/4)*(5*b*B + A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(
Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[b*x^2 + c*x^4])

Rule 2038

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(c*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(a*(m + j*p + 1)), x] + Dist[(a*d*(m + j*p + 1
) - b*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1)), Int[(e*x)^(m + n)*(a*x^j + b*x^(j + n))^p, x], x] /; F
reeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m
+ j*p, -1] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, -(n*p) - 1])) && (GtQ[e, 0] || IntegersQ[j,
n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1, 0]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (A+B x^2\right ) \sqrt{b x^2+c x^4}}{x^{9/2}} \, dx &=-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}-\frac{\left (2 \left (-\frac{5 b B}{2}-\frac{A c}{2}\right )\right ) \int \frac{\sqrt{b x^2+c x^4}}{x^{5/2}} \, dx}{5 b}\\ &=-\frac{2 (5 b B+A c) \sqrt{b x^2+c x^4}}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}+\frac{(2 c (5 b B+A c)) \int \frac{x^{3/2}}{\sqrt{b x^2+c x^4}} \, dx}{5 b}\\ &=-\frac{2 (5 b B+A c) \sqrt{b x^2+c x^4}}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}+\frac{\left (2 c (5 b B+A c) x \sqrt{b+c x^2}\right ) \int \frac{\sqrt{x}}{\sqrt{b+c x^2}} \, dx}{5 b \sqrt{b x^2+c x^4}}\\ &=-\frac{2 (5 b B+A c) \sqrt{b x^2+c x^4}}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}+\frac{\left (4 c (5 b B+A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{5 b \sqrt{b x^2+c x^4}}\\ &=-\frac{2 (5 b B+A c) \sqrt{b x^2+c x^4}}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}+\frac{\left (4 \sqrt{c} (5 b B+A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{5 \sqrt{b} \sqrt{b x^2+c x^4}}-\frac{\left (4 \sqrt{c} (5 b B+A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{b}}}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{5 \sqrt{b} \sqrt{b x^2+c x^4}}\\ &=\frac{4 \sqrt{c} (5 b B+A c) x^{3/2} \left (b+c x^2\right )}{5 b \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{b x^2+c x^4}}-\frac{2 (5 b B+A c) \sqrt{b x^2+c x^4}}{5 b x^{3/2}}-\frac{2 A \left (b x^2+c x^4\right )^{3/2}}{5 b x^{11/2}}-\frac{4 \sqrt [4]{c} (5 b B+A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}+\frac{2 \sqrt [4]{c} (5 b B+A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.041659, size = 96, normalized size = 0.29 \[ -\frac{2 \sqrt{x^2 \left (b+c x^2\right )} \left (x^2 (A c+5 b B) \, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};-\frac{c x^2}{b}\right )+A \left (b+c x^2\right ) \sqrt{\frac{c x^2}{b}+1}\right )}{5 b x^{7/2} \sqrt{\frac{c x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x^2)*Sqrt[b*x^2 + c*x^4])/x^(9/2),x]

[Out]

(-2*Sqrt[x^2*(b + c*x^2)]*(A*(b + c*x^2)*Sqrt[1 + (c*x^2)/b] + (5*b*B + A*c)*x^2*Hypergeometric2F1[-1/2, -1/4,
 3/4, -((c*x^2)/b)]))/(5*b*x^(7/2)*Sqrt[1 + (c*x^2)/b])

________________________________________________________________________________________

Maple [A]  time = 0.032, size = 422, normalized size = 1.3 \begin{align*}{\frac{2}{ \left ( 5\,c{x}^{2}+5\,b \right ) b}\sqrt{c{x}^{4}+b{x}^{2}} \left ( 2\,A\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){x}^{2}bc-A\sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{2}\sqrt{{ \left ( -cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{-{cx{\frac{1}{\sqrt{-bc}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}},{\frac{\sqrt{2}}{2}} \right ){x}^{2}bc+10\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){x}^{2}{b}^{2}-5\,B\sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-bc}}{\sqrt{-bc}}}}\sqrt{-{\frac{cx}{\sqrt{-bc}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-bc}}{\sqrt{-bc}}}},1/2\,\sqrt{2} \right ){x}^{2}{b}^{2}-2\,A{c}^{2}{x}^{4}-5\,B{x}^{4}bc-3\,Abc{x}^{2}-5\,B{x}^{2}{b}^{2}-A{b}^{2} \right ){x}^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*(c*x^4+b*x^2)^(1/2)/x^(9/2),x)

[Out]

2/5*(c*x^4+b*x^2)^(1/2)/x^(7/2)/(c*x^2+b)*(2*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(
1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1
/2))*x^2*b*c-A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/
(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*x^2*b*c+10*B*((c*x+(-b*c)^(
1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticE
(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*x^2*b^2-5*B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1
/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1
/2))^(1/2),1/2*2^(1/2))*x^2*b^2-2*A*c^2*x^4-5*B*x^4*b*c-3*A*b*c*x^2-5*B*x^2*b^2-A*b^2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{2} + A\right )}}{x^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(c*x^4+b*x^2)^(1/2)/x^(9/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)/x^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{2} + A\right )}}{x^{\frac{9}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(c*x^4+b*x^2)^(1/2)/x^(9/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)/x^(9/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*(c*x**4+b*x**2)**(1/2)/x**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{2} + A\right )}}{x^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(c*x^4+b*x^2)^(1/2)/x^(9/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)/x^(9/2), x)